Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1287: 342047, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182363

RESUMO

Based on TiO2 nanorod arrays@PDA/Ag (TNRs@PDA/Ag), a better surface-enhanced Raman scattering (SERS) sensor with effective enrichment and enhancement was investigated for duplex SERS detection of illicit food dyes. Biomimetic PDA functions as binary mediators by utilizing the structural characteristics of polydopamine (PDA), which include the conjugated structure and abundant hydrophilic groups. One PDA functioned as an electron transfer mediator to enhance the efficiency of electron transfer, and the other as an enrichment mediator to effectively enrich rhodamine B (RhB) and crystal violet (CV) through hydrogen bonding, π-π stacking, and electrostatic interactions. Individual and duplex detection of illicit food dyes (RhB and CV) was performed using TNRs@PDA/Ag to estimate SERS applications. Their linear equations and limits of detection of 1 nM for RhB and 5 nM for CV were derived. Individual and duplex food colour detection was successfully accomplished even in genuine chili meal with good results. The bifunctional TNRs@PDA/Ag-based highly sensitive and duplex SERS dye detection will have enormous potential for food safety monitoring.


Assuntos
Corantes de Alimentos , Nanotubos , Corantes , Biomimética , Violeta Genciana
2.
Nat Commun ; 14(1): 3031, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231019

RESUMO

Recently, rapidly increased demands of integration and miniaturization continuously challenge energy densities of dielectric capacitors. New materials with high recoverable energy storage densities become highly desirable. Here, by structure evolution between fluorite HfO2 and perovskite hafnate, we create an amorphous hafnium-based oxide that exhibits the energy density of ~155 J/cm3 with an efficiency of 87%, which is state-of-the-art in emergingly capacitive energy-storage materials. The amorphous structure is owing to oxygen instability in between the two energetically-favorable crystalline forms, in which not only the long-range periodicities of fluorite and perovskite are collapsed but also more than one symmetry, i.e., the monoclinic and orthorhombic, coexist in short range, giving rise to a strong structure disordering. As a result, the carrier avalanche is impeded and an ultrahigh breakdown strength up to 12 MV/cm is achieved, which, accompanying with a large permittivity, remarkably enhances the energy storage density. Our study provides a new and widely applicable platform for designing high-performance dielectric energy storage with the strategy exploring the boundary among different categories of materials.

3.
Talanta ; 259: 124502, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027935

RESUMO

Ag dendrites have recently been widely reported due to their excellent surface-enhanced Raman scattering (SERS) properties. However, prepared pristine Ag dendrites are usually contaminated by organic impurities, which has a huge negative impact on their Raman detection and greatly limits their practical applications. In this paper, we reported a facile strategy to obtain clean Ag dendrites by high temperature decomposition of organic impurities. With the assistance of ultra-thin coating via atomic layer deposition (ALD), the nanostructure of Ag dendrites can be retained at high temperature. SERS activity can be recovered after etching ALD coating. Chemical composition tests indicate that the organic impurities can be effectively removed. As a result, the clean Ag dendrites can obtain more clearly discernible Raman peaks and lower limits of detection than the pristine Ag dendrites. Furthermore, it was demonstrated that this strategy is also applicable to clean other substrates, such as gold nanoparticles. Therefore, high temperature annealing with the help of ALD sacrifice coating is a promising and non-destructive strategy to clean the SERS substrates.

4.
Nanotechnology ; 34(26)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36996801

RESUMO

Metal nanogaps can confine electromagnetic field into extremely small volumes, exhibiting strong surface plasmon resonance effect. Therefore, metal nanogaps show great prospects in enhancing light-matter interaction. However, it is still challenging to fabricate large-scale (centimeter scale) nanogaps with precise control of gap size at nanoscale, limiting the practical applications of metal nanogaps. In this work, we proposed a facile and economic strategy to fabricate large-scale sub-10 nm Ag nanogaps by the combination of atomic layer deposition (ALD) and mechanical rolling. The plasmonic nanogaps can be formed in the compacted Ag film by the sacrificial Al2O3deposited via ALD. The size of nanogaps are determined by the twice thickness of Al2O3with nanometric control. Raman results show that SERS activity depends closely on the nanogap size, and 4 nm Ag nanogaps exhibit the best SERS activity. By combining with other porous metal substrates, various sub-10 nm metal nanogaps can be fabricated over large scale. Therefore, this strategy will have significant implications for the preparation of nanogaps and enhanced spectroscopy.

5.
Dalton Trans ; 51(25): 9664-9672, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35704906

RESUMO

The conformal coating or surface modification in high aspect ratio nanostructures is a tough challenge using traditional physical/chemical vapor deposition, especially for metal deposition. In this work, the growth behavior of iridium (Ir) metal formed by atomic layer deposition (ALD) in anodic aluminum oxide (AAO) templates was explored deeply. It is found that the surface hydrophilicity is crucial for the nucleation of ALD Ir. An in situ ALD Al2O3 layer with an ultra-hydrophilic surface can greatly promote the nucleation of ALD Ir in AAO nanopores. The effect of the Ir precursor pulse time, diameter, and length of AAO nanopores on the infiltration depth of ALD Ir was investigated systematically. The results show that the infiltration depth of ALD Ir in AAO nanopores is in proportion to the pore diameter and the square root of the Ir precursor pulse time, which follows a diffusion-limited model. Furthermore, the Ir precursor pulse time to obtain conformal Ir coating throughout all the AAO channels is in proportion to the square of the aspect ratio of AAO templates. In addition, the conformal Ir deposition in AAO nanopores is also related to the Ir precursor purge time and the O2 partial pressure. Insufficient Ir purge time could cause a CVD-like reaction, leading to the reduction of the infiltration depth in AAO. Higher O2 partial pressure can facilitate Ir nucleation with more Ir precursor consumption at the entrance of nanopores, decreasing the infiltration depth in AAO nanopores, so appropriate O2 partial pressure should be chosen for ALD Ir in high aspect ratio materials. Above all, our research is valuable for surface modification or coating of metal by ALD in high aspect ratio nanostructures for 3D microelectronics, nano-fabrication, catalysis and energy fields.

6.
J Phys Condens Matter ; 34(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34814131

RESUMO

α-Sn is a topologically nontrivial semimetal in its natural structure. Upon compressively strained in plane, it transforms into a topological insulator. But, up to now, a clear and systematic understanding of the topological surface mode of topological insulating α-Sn is still lacking. In the present work, first-principle simulations are employed to investigate the electronic structure evolution of Ge1-xSnxalloys aiming at understanding the band reordering, topological phase transition and topological surface mode of α-Sn in detail. Progressing from Ge to Sn with increasing Sn content in Ge1-xSnx, the conduction band inverts with the first valence band (VB) and then with the second VB sequentially, rather than inverting with the latter directly. Correspondingly, a topologically nontrivial surface mode arises in the first inverted band gap. Meanwhile, a fragile Dirac cone appears in the second inverted band gap as a result of the reorganization of the topological surface mode caused by the first VB. The reorganization of the topological surface mode in α-Sn is very similar to the HgTe case. The findings of the present work are helpful for understanding and utilizing of the topological surface mode of α-Sn.

7.
Mitochondrial DNA B Resour ; 6(10): 2960-2961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553058

RESUMO

Cycas bifida (Dyer) K.D.Hill (2004) is an extremely small population-protected species of China. In this study, we reported the first chloroplast genome sequence of C. bifida. The chloroplast genome of C. bifida included two single-copy regions (large single-copy (LSC) and small single-copy (SSC)) and a pair of inverted repeats (IRs) regions comprising 88,946 bp, 23,107 bp, and 25,053 bp, respectively. The complete chloroplast genome of C. bifida contains 131 genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. The overall GC content of the C. bifida chloroplast genome is 39.41%, and the LSC, SSC, and IR regions occupy 38.70%, 36.52%, and 42.02%, respectively. A phylogenetic analysis was performed based on complete chloroplast genomes from 15 species and found that C. bifida was closely related to Cycas szechuanensis W.C.Cheng & L.K.Fu.

8.
Sci Rep ; 10(1): 13437, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778781

RESUMO

In this work, commercial anatase TiO2 powders were modified using ultrathin Fe2O3 layer by atomic layer deposition (ALD). The ultrathin Fe2O3 coating having small bandgap of 2.20 eV can increase the visible light absorption of TiO2 supports, at the meantime, Fe2O3/TiO2 heterojunction can effectively improve the lifetime of photogenerated electron-hole pairs. Results of ALD Fe2O3 modified TiO2 catalyst, therefore, showed great visible light driven catalytic degradation of methyl orange compared to pristine TiO2. A 400 cycles of ALD Fe2O3 (~ 2.6 nm) coated TiO2 powders exhibit the highest degradation efficiency of 97.4% in 90 min, much higher than pristine TiO2 powders of only 12.5%. Moreover, an ultrathin ALD Al2O3 (~ 2 nm) was able to improve the stability of Fe2O3-TiO2 catalyst. These results demonstrate that ALD surface modification with ultrathin coating is an extremely powerful route for the applications in constructing efficient and stable photocatalysts.

9.
Dalton Trans ; 49(31): 10866-10873, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32716435

RESUMO

To address the issues of large volume expansion and low electrical conductivity of ZnO anode nanomaterials during lithium ion battery operation, herein we engineered a rod-like ZnO anode with robust and conductive TiO2 quantum dot (QD)@carbon coating derived from molecular layer deposited titanicone, in which the TiO2 QDs are well confined inside the carbon layer. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) confirm the formation of TiO2 QDs and carbonization of fumaric acid in hybrid films after annealing in H2 atmosphere at 700 °C. Benefiting from a unique protective layer design, the prepared TiO2 QD@carbon@ZnO nanorod (NR) anodes display outstanding cycling performance with a discharge capacity of 1154 mA h g-1 after 100 cycles and 70% capacity retention, along with a high rate capacity of 470 mA h g-1 for 500 cycles at 2 A g-1. Moreover, our work demonstrates an innovative and promising approach toward a robust and conductive metal oxide QD@carbon nanocomposite layer for electrode materials in the future.

10.
Chem Commun (Camb) ; 56(61): 8675-8678, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32613966

RESUMO

Co-Pt bimetallic nanoparticles with adjustable composition and particle size were prepared by the combination of atomic layer deposition and H2 post-deposition annealing. The structure, magnetic and electrocatalytic properties of Co-Pt bimetallic nanoparticles can be facilely tuned by controlling the composition.

11.
Sci Rep ; 9(1): 11526, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395921

RESUMO

In this work, we designed ZnO/TiO2 nanolaminates by atomic layer deposition (ALD) as anode material for lithium ion batteries. ZnO/TiO2 nanolaminates were fabricated on copper foil by depositing unit of 26 cycles ZnO/26 cycles TiO2 repeatedly using ALD. ZnO/TiO2 nanolaminates are much more stable than pristine ZnO films during electrochemical cycling process. Therefore, ZnO/TiO2 nanolaminates exhibit excellent lithium storage performance with an improved cycling performance and superior rate capability compared to pristine ZnO films. Moreover, coulombic efficiency (CE) of ZnO/TiO2 nanolaminates is above 99%, which is much higher than the value of pristine ZnO films. Excellent ultralong-life performance is gained for ZnO/TiO2 nanolaminates, retaining a reversible capacity of ~667 mAh g-1 within cut-off voltage of 0.05-2.5 V after 1200 cycles of charge-discharge at 500 mA g-1. Constructing nanolaminates structures via ALD might open up new opportunities for improving the performance of anode materials with large volume expansion in lithium ion batteries.

12.
Sci Rep ; 9(1): 10438, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320728

RESUMO

The wide applications of ultrathin group IV metal oxide films (TiO2, ZrO2 and HfO2) probably expose materials to potentially reactive etchants and solvents, appealing for extraordinary chemical stability and corrosion resistance property. In this paper, TiO2 ultrathin films were deposited on Si at 200 °C while ZrO2 and HfO2 were grown at 250 °C to fit their growth temperature window, by thermal atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). A variety of chemical liquid media including 1 mol/L H2SO4, 1 mol/L HCl, 1 mol/L KOH, 1 mol/L KCl, and 18 MΩ deionized water were used to test and compare chemical stability of all these as-deposited group IV metal oxides thin films, as well as post-annealed samples at various temperatures. Among these metal oxides, TALD/PEALD HfO2 ultrathin films exhibit the best chemical stability and anti-corrosion property without any change in thickness after long time immersion into acidic, alkaline and neutral solutions. As-deposited TALD ZrO2 ultrathin films have slow etch rate of 1.06 nm/day in 1 mol/L HCl, however other PEALD ZrO2 ultrathin films and annealed TALD ones show better anti-acid stability, indicating the role of introduction of plasma O2 in PEALD and post-thermal treatment. As-deposited TiO2 ultrathin films by TALD and PEALD are found to be etched slowly in acidic solutions, but the PEALD can decrease the etching rate of TiO2 by ~41%. After post-annealing, TiO2 ultrathin films have satisfactory corrosion resistance, which is ascribed to the crystallization transition from amorphous to anatase phase and the formation of 5% Si-doped TiO2 ultrathin layers on sample surfaces, i.e. Ti-silicate. ZrO2, and TiO2 ultrathin films show excellent corrosion endurance property in basic and neutral solutions. Simultaneously, 304 stainless steel coated with PEALD-HfO2 is found to have a lower corrosion rate than that with TALD-HfO2 by means of electrochemical measurement. The pre-treatment of plasma H2 to 304 stainless steel can effectively reduce interfacial impurities and porosity of overlayers with significantly enhanced corrosion endurance. Above all, the chemical stability and anti-corrosion properties of IV group metal oxide coatings can be improved by using PEALD technique, post-annealing process and plasma H2 pre-treatment to substrates.

13.
Langmuir ; 35(8): 3020-3030, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30722663

RESUMO

Ti-based maleic acid (MA) hybrid films were successfully fabricated by molecular layer deposition (MLD) using organic precursor MA and inorganic precursor TiCl4. The effect of deposition temperature on the growth rate, composition, and bonding mode of hybrid thin films has been investigated systematically. With increasing temperature from 140 to 280 °C, the growth rate decreases from 1.42 to 0.16 Å per MLD cycle with basically unchanged composition ratio of C:O:Ti in the films. Fourier transform infrared spectra indicate that all hybrid films show preference for bidentate bonding mode. Further analyses of X-ray photoelectron spectroscopy and in situ quartz crystal microbalance elucidate that as-deposited MLD Ti-MA hybrid films consist of inorganic Ti-O-Ti units and organic-inorganic Ti-MA units. In addition, the density functional theory calculation was performed to investigate the possible reaction mechanism of the TiCl4-MA MLD process, which is well consistent with experimental results. More importantly, upon comparison with the TiCl4-fumaric acid MLD system, it is demonstrated that the cis- and trans-configurations of butenedioic acid influence the MLD growth, bonding mode, stability, and charging ability of MLD hybrid films. Ti-MA hybrid films exhibit better stability and charging ability than Ti-FA hybrid films, benefiting from the inorganic Ti-O-Ti units in the hybrid films.

14.
ACS Appl Mater Interfaces ; 11(8): 8284-8290, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30707841

RESUMO

Recently, flexible and wearable electronics are highly desirable because of their great potential in the next-generation information devices. In this work, we demonstrate the realization of the metal-insulator transition (MIT) effect in flexible rare-earth nickelate heterostructures. The NdNiO3 thin films are grown on lattice-mismatched mica substrates along the pseudocubic (111) direction via the van der Waals heteroepitaxy, in which the MIT behaviors are induced and modulated by carefully controlling the lattice strain and the ionic valence state with SrTiO3 and LaAlO3 buffering layers. Enhanced MIT properties with sharp transition and significant resistivity change between the metallic and the insulating states are achieved in the NdNiO3/LaAlO3/SrTiO3/mica heterostructures with appropriate in-plane tensile strain and suppressed concentration of Ni2+ ions. In addition, the proposed NdNiO3-based heterostructures exhibit excellent flexibility with reliable MIT characteristics not only in statically concave/convex bending but also in dynamically bending cycling up to 1000 times. The present work provides a platform to design and fabricate new flexible devices integrated with the MIT effect.

15.
Sci Rep ; 8(1): 12131, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108310

RESUMO

In this work, TiN film deposited by plasma enhanced atomic layer deposition (PEALD) is adopted to modify the commercial anatase TiO2 powders. A series of analyses indicate that the surface modification of 20, 50 and 100 cycles of TiN by PEALD does not change the morphology, crystal size, lattice parameters, and surface area of TiO2 nano powders, but forms an ultrathin amorphous layer of nitrogen doped TiO2 (TiOxNy) on the powder surfaces. This ultrathin TiOxNy can facilitate the absorption of TiO2 in visible light spectrum. As a result, TiOxNy coated TiO2 powders exhibit excellent photocatalytic degradation towards methyl orange under the visible light with good photocatalytic stability compared to pristine TiO2 powders. TiOxNy (100 cycles PEALD TiN) coated TiO2 powders exhibit the excellent photocatalytic activity with the degradation efficiency of 96.5% in 2 hours, much higher than that of pristine TiO2 powder of only 4.4%. These results clearly demonstrate that only an ultrathin surface modification layer can dramatically improve the visible light photocatalytic activity of commercial TiO2 powders. Therefore, this surface modification using ALD is an extremely promising route to prepare visible light active photocatalysts.

16.
Phys Chem Chem Phys ; 19(39): 26918-26925, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28956045

RESUMO

Sulfur is easy to be incorporated into ZnO nanoparticles by the solution-combustion method. Herein, the magnetic and adsorption properties of a series of ZnO1-xSx (x = 0, 0.05, 0.1, 0.15, and 0.2) nanoparticles were systematically investigated. The X-ray diffraction patterns show that the as-prepared ZnO1-xSx nanoparticles have the hexagonal wurtzite structure of ZnO with a low sulfur content that gradually transforms into the zinc blende structure of ZnS when the x value is greater than 0.1. PL spectra show several bands due to different transitions, which have been explained by the recombination of free excitons or defect-induced transitions. The introduction of sulfur not only modifies the bandgap of ZnO, but also impacts the concentration of Zn vacancies. The as-prepared ZnO shows weak room-temperature ferromagnetism, and the incorporation of sulfur improves the ferromagnetism owing to the increased concentration of Zn vacancies, which may be stabilized by the doped sulfur ions. The adsorption capability of ZnO1-xSx nanoparticles has been significantly improved, and the process can be well described by the pseudo-first-order kinetic model and the Freundlich isotherm model. The mechanism has been confirmed to be due to the active sulfate groups existing in zinc oxysulfide nanoparticles.

17.
Nanoscale Res Lett ; 12(1): 497, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28815483

RESUMO

Co3O4-coated commercial TiO2 powders (P25) p-n junction photocatalysts were prepared by plasma-enhanced atomic layer deposition (PEALD) technique. The structure, morphology, bandgap, and photocatalytic properties under ultraviolet light were investigated systematically. Although the deposition of Co3O4 does not change the anatase structure and crystallite size of P25 powders, the ultraviolet photocatalytic activity has been improved evidently. For the Co3O4-coated P25 powders, the trace Co ions exist as Co3O4 nanoparticles attached to TiO2 powder surface instead of the occupation of Ti4+ position in TiO2 lattice. The Co3O4-coated P25 powders exhibit enhanced photocatalytic degradation efficiency of almost 100% for methylene blue in 1.5 h under ultraviolet light, compared with P25 of 80%. The Mott-Schottky plots of photocatalyst powders confirm the p-n heterojunction formation in Co3O4-TiO2 nanocomposite materials, which is beneficial to increase the efficiency of photogenerated electron-hole separation. In addition, the Co3O4 coating also promotes the adsorption of organic dyes of methylene blue on P25 powders.

18.
Sci Rep ; 7(1): 5161, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701788

RESUMO

A simple high-throughput approach is presented in this work to fabricate the Au nanoparticles (NPs)/nanogap/Au NPs structure for surface enhanced Raman scattering (SERS). This plasmonic nanostructure can be prepared feasibly by the combination of rapid thermal annealing (RTA), atomic layer deposition (ALD) and chemical etching process. The nanogap size between Au NPs can be easily and precisely tuned to nanometer scale by adjusting the thickness of sacrificial ALD Al2O3 layer. Finite-difference time-domain (FDTD) simulation data indicate that most of enhanced field locates at Au NPs nanogap area. Moreover, Au NPs/nanogap/Au NPs structure with smaller gap exhibits the larger electromagnetic field. Experimental results agree well with FDTD simulation data, the plasmonic structure with smaller nanogap size has a stronger Raman intensity. There is highly strong plasmonic coupling in the Au nanogap, so that a great SERS effect is obtained when detecting methylene blue (MB) molecules with an enhancement factor (EF) over 107. Furthermore, this plasmonic nanostructure can be designed on large area with high density and high intensity hot spots. This strategy of producing nanoscale metal gap on large area has significant implications for ultrasensitive Raman detection and practical SERS application.

19.
Nanoscale Res Lett ; 12(1): 393, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28599512

RESUMO

The HfO2/TiO2/HfO2 trilayer-structure resistive random access memory (RRAM) devices have been fabricated on Pt- and TiN-coated Si substrates with Pt top electrodes by atomic layer deposition (ALD). The effect of the bottom electrodes of Pt and TiN on the resistive switching properties of trilayer-structure units has been investigated. Both Pt/HfO2/TiO2/HfO2/Pt and Pt/HfO2/TiO2/HfO2/TiN exhibit typical bipolar resistive switching behavior. The dominant conduction mechanisms in low and high resistance states (LRS and HRS) of both memory cells are Ohmic behavior and space-charge-limited current, respectively. It is found that the bottom electrodes of Pt and TiN have great influence on the electroforming polarity preference, ratio of high and low resistance, and dispersion of the operating voltages of trilayer-structure memory cells. Compared to using symmetric Pt top/bottom electrodes, the RRAM cells using asymmetric Pt top/TiN bottom electrodes show smaller negative forming voltage of -3.7 V, relatively narrow distribution of the set/reset voltages and lower ratio of high and low resistances of 102. The electrode-dependent electroforming polarity can be interpreted by considering electrodes' chemical activity with oxygen, the related reactions at anode, and the nonuniform distribution of oxygen vacancy concentration in trilayer-structure of HfO2/TiO2/HfO2 on Pt- and TiN-coated Si. Moreover, for Pt/HfO2/TiO2/HfO2/TiN devices, the TiN electrode as oxygen reservoir plays an important role in reducing forming voltage and improving uniformity of resistive switching parameters.

20.
Nanoscale Res Lett ; 12(1): 370, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28549375

RESUMO

In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10-3 A/cm2 at gate bias of Vfb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO2/SiO2/Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...